2011-04-06

Index sizes depending on the type of the field being indexed

The sizes of indexes (and tables of cause) are influencing the look up speed directly (the smaller are the corresponding file system files, the faster one can scan it, not saying anything about the sizes, needed to be kept in memory caches)

So I did some simple experiment to demonstrate the effect of choosing different field types to be used as index fields to the size of the indexes and tables.

DROP DATABASE IF EXISTS eval;
CREATE DATABASE eval;
\c eval
*/
SET work_mem TO '128MB';
SET maintenance_work_mem TO '128MB';

DROP SCHEMA IF EXISTS eval_schema CASCADE;
CREATE SCHEMA eval_schema;

SET search_path to eval_schema;

CREATE TABLE eval_config ( table_name text, id_field_type text, id_field_expression text, row_count integer DEFAULT 100000 );
INSERT INTO eval_config VALUES 
( 'integer_short_id_table', 'integer', 's.i' ),
( 'integer_large_id_table', 'integer', 's.i * 123' ),
( 'bigint_short_id_table', 'bigint', 's.i' ),
( 'bigint_large_id_table', 'bigint', 's.i * 123' ),
( 'text_number_short_id_table', 'text', 's.i' ),
( 'text_number_large_id_table', 'text', 's.i * 123' ),
( 'numeric_short_id_table', 'numeric', 's.i' ),
( 'numeric_large_id_table', 'numeric', 's.i * 123' ),
( 'binary_md5_text_table', 'bytea', $$decode( md5( s.i::text || '-text-filler'), 'hex' ) $$ ),
( 'md5_text_table', 'text', $$md5( s.i::text || '-text-filler' )$$ );

CREATE VIEW eval_table_stats AS
  SELECT t.relname as "Table name",
       c.id_field_type as "Indexed field type",
       c.id_field_expression as "Expression",
       c.row_count as "Row count",
       s.stawidth as "Average id field width",
       pg_size_pretty(pg_table_size(t.oid)) as "Table size without index",
       pg_size_pretty(pg_indexes_size(t.oid)) as "Index size" /*,
       n_tup_ins,
       n_tup_upd,
       n_tup_del,
       n_tup_hot_upd,
       n_live_tup,
       n_dead_tup */
  FROM eval_config as c
  JOIN pg_class as t
    ON c.table_name = t.relname
   AND t.relkind = 'r'
  JOIN pg_namespace as n
    ON relnamespace = n.oid
   AND n.nspname = 'eval_schema'
  LEFT 
  JOIN pg_statistic as s
    ON s.starelid = t.oid
   AND s.staattnum = 1
  LEFT
  JOIN pg_stat_user_tables as w
    ON w.relid = t.oid;

DO $SQL$
DECLARE 
  config record;
BEGIN
  FOR config IN SELECT * FROM eval_config
  LOOP
    RAISE INFO 'Creating table %', quote_ident( config.table_name );
    EXECUTE $$
    CREATE TABLE $$ || quote_ident( config.table_name ) || $$
    ( id $$ || config.id_field_type || $$, data text );
    $$;
    RAISE INFO 'Filling table %', quote_ident( config.table_name );
    EXECUTE $$
    INSERT INTO $$ || quote_ident( config.table_name ) || $$
    SELECT ( $$ || config.id_field_expression || $$ )::$$ || config.id_field_type || $$, 'some filling data'
      FROM generate_series(1, $$ || config.row_count || $$) as s(i);
    $$;
    RAISE INFO 'Building index on %', quote_ident( config.table_name );
    EXECUTE $$
    CREATE INDEX ON $$ || quote_ident( config.table_name ) || $$ ( id );
    $$;
    RAISE INFO 'Analyzing table %', quote_ident( config.table_name );
    EXECUTE $$
    ANALYZE $$ || quote_ident( config.table_name ) || $$;
    $$;
  END LOOP;
END;
$SQL$;

SELECT * FROM eval_table_stats;

DO $SQL$
DECLARE 
  config record;
BEGIN
  FOR config IN SELECT * FROM eval_config
  LOOP
    RAISE INFO 'Bloating table % (phase 1)', quote_ident( config.table_name );
    EXECUTE $$
    UPDATE $$ || quote_ident( config.table_name ) || $$
       SET data = data
     WHERE random() > 0.5;
    $$;
    RAISE INFO 'Bloating table % (phase 2)', quote_ident( config.table_name );
    EXECUTE $$
    UPDATE $$ || quote_ident( config.table_name ) || $$
       SET data = data
     WHERE random() > 0.5;
    $$;
    RAISE INFO 'Analyzing table %', quote_ident( config.table_name );
    EXECUTE $$
    ANALYZE $$ || quote_ident( config.table_name ) || $$;
    $$;
  END LOOP;
END;
$SQL$;

SELECT * FROM eval_table_stats;

As a result of execution of this script, we got several tables and some statistics on the table and index sizes.
I created the tables with id field with types: integer, bigint, text and numeric, additionally bytea and text for the md5 hash indexes. Actually the table size is including the filler text data, so it's size is not only the size of the fields being evaluated:

Table sizes just after insertion of 100T rows

Table name Indexed field type Expression Row count Average id field width Table size without index Index size
integer_short_id_table integer s.i 100000 4 5128 kB 1768 kB
integer_large_id_table integer s.i * 1234 100000 4 5128 kB 1768 kB
bigint_short_id_table bigint s.i 100000 8 5552 kB 2208 kB
bigint_large_id_table bigint s.i * 1234 100000 8 5552 kB 2208 kB
text_number_short_id_table text s.i 100000 5 5128 kB 2200 kB
text_number_large_id_table text s.i * 1234 100000 9 5552 kB 2624 kB
numeric_short_id_table numeric s.i 100000 8 5552 kB 2616 kB
numeric_large_id_table numeric s.i * 1234 100000 9 5624 kB 2656 kB
binary_md5_text_table bytea decode( md5( s.i::text || '-text-filler'), 'hex' ) 100000 17 6336 kB 3552 kB
md5_text_table text md5( s.i::text || '-text-filler' ) 100000 33 7880 kB 5328 kB

Table sizes after random bloating (2 times random update of 50% of rows)

Table name Indexed field type Expression Row count Average id field width Table size without index Index size
integer_short_id_table integer s.i 100000 4 10232 kB 5288 kB
integer_large_id_table integer s.i * 1234 100000 4 10232 kB 5272 kB
bigint_short_id_table bigint s.i 100000 8 11 MB 6592 kB
bigint_large_id_table bigint s.i * 1234 100000 8 11 MB 6560 kB
text_number_short_id_table text s.i 100000 5 10232 kB 5896 kB
text_number_large_id_table text s.i * 1234 100000 9 11 MB 7096 kB
numeric_short_id_table numeric s.i 100000 8 11 MB 7752 kB
numeric_large_id_table numeric s.i * 1234 100000 9 11 MB 7880 kB
binary_md5_text_table bytea decode( md5( s.i::text || '-text-filler'), 'hex' ) 100000 17 12 MB 7336 kB
md5_text_table text md5( s.i::text || '-text-filler' ) 100000 33 15 MB 11 MB

Table sizes just after insertion of 5M rows

Table name Indexed field type Expression Row count Average id field width Table size without index Index size
integer_short_id_table integer s.i 5000000 4 249 MB 86 MB
integer_large_id_table integer s.i * 123 5000000 4 249 MB 86 MB
bigint_short_id_table bigint s.i 5000000 8 269 MB 107 MB
bigint_large_id_table bigint s.i * 123 5000000 8 269 MB 107 MB
text_number_short_id_table text s.i 5000000 7 269 MB 107 MB
text_number_large_id_table text s.i * 123 5000000 9 269 MB 128 MB
numeric_short_id_table numeric s.i 5000000 8 269 MB 129 MB
numeric_large_id_table numeric s.i * 123 5000000 10 284 MB 129 MB
binary_md5_text_table bytea decode( md5( s.i::text || '-text-filler'), 'hex' ) 5000000 17 308 MB 172 MB
md5_text_table text md5( s.i::text || '-text-filler' ) 5000000 33 383 MB 259 MB

Table sizes after random bloating (2 times random update of 50% of rows)

Table name Indexed field type Expression Row count Average id field width Table size without index Index size
integer_short_id_table integer s.i 5000000 4 498 MB 257 MB
integer_large_id_table integer s.i * 123 5000000 4 498 MB 257 MB
bigint_short_id_table bigint s.i 5000000 8 539 MB 321 MB
bigint_large_id_table bigint s.i * 123 5000000 8 539 MB 321 MB
text_number_short_id_table text s.i 5000000 7 538 MB 287 MB
text_number_large_id_table text s.i * 123 5000000 9 539 MB 340 MB
numeric_short_id_table numeric s.i 5000000 8 539 MB 384 MB
numeric_large_id_table numeric s.i * 123 5000000 10 569 MB 384 MB
binary_md5_text_table bytea decode( md5( s.i::text || '-text-filler'), 'hex' ) 5000000 17 615 MB 354 MB
md5_text_table text md5( s.i::text || '-text-filler' ) 5000000 33 766 MB 545 MB

Ok, we see here, that actually it is a field byte width, that is important and for small numbers, the difference is really not so significant, but still an index on integer (4 bytes wide) filed is little smaller then index on text representation of the same ids even for tables that keep 10000 records only (these results are not posted here).

I specially was creating the tables in 2 variants, id as a result of 1..N series, and multiplied by 1234 or 123 to make the numbers wider in text representation to see how the length of the text representation of the number is influencing the size of the index.

Some more play with the smallint type, showed that it does save space in the table itself, but the index size is the same as for integer.

What was really surprising for me, that numeric type had bigger indexes then text indexes for the same numbers.

And of cause again and again -- indexes on some long text fields can be built on the md5 hash of such a text and be much more performant, when you index bytea version of the md5 hash instead of text representation of the md5 hash itself. Though md5 hash collisions can theoretically happen, I have not experienced them yet myself in practice.

2 comments:

klaus said...

Compared to other forms of international voice and text communication, International IoT SIM card are the most cost-effective option. In many countries, most foreign SIM cards currently do not charge for incoming calls. The SIM supplier of these worldwide SIM cards charges meager rates for phone calls, and receiving text messages is always free.

Alia parker said...

Data SIM cards for travel are a popular choice among international travelers who want to stay connected and avoid high data roaming charges while exploring different countries.